Experimental Design and Scientific Rigor An introduction to good science

Ernesto Salcedo, PhD

Experimental Design and Scientific Rigor talk overview

- Terminology
 - Scientific Method
- Experimental Design
- Science in Crisis?
- Rigor and Reproducibility
- Paper Assignment

Fun with Science Terminology

Science Fun with Terminology

- From Latin "scientia" for "Knowing, expertise"
- A Systemic and Logical Approach to Discovery
 - to understand how things work
- Also, the Body of Knowledge based on demonstrable and reproducible data

Hypothesis vs Theory Fun with Terminology

- Which one means a proposed explanation (or guess) of a (Biological) \bullet Phenomenon?
- Which one means a well-supported understanding of a (Biological) • Phenomenon?

What is a Theory? Fun with Scientific Terminology

- A comprehensive explanation of some aspect of nature that is supported by a vast body of evidence
- A Theory is WELL Supported; it is not a guess or speculation
- Properties of a theory
 - Has been tested numerous times
 - Found to explain previous observations
 - Makes accurate predictions about future observations.
- Examples
 - heliocentric theory Earth revolves around the Sun
 - Cell theory living things are made up of cell

What is a Hypothesis? Fun with Scientific Terminology

- An educated guess about how things work
- It is an attempt to answer your question with an explanation that can be tested.
- A good hypothesis allows you to then make a prediction: "If [I do this], then [this] will happen.'

Hypothesis Examples

A hypothesis predicts the relationship between the independent and dependent variable.

There are different ways of stating a hypothesis.

NULL HYPOTHESIS

PLE HYPOTHESIS

The number of calories consumed has no effect on weight.

If you consume fewer calories, you'll lose weight.

NONDIRECTIONAL **HYPOTHESIS**

There is a relationship between calories consumed and weight.

Scientific Method

Scientific Nethod

a series of procedural steps

1. OBSERVATION

2. HYPOTHESIS

3. EXPERIMENT

4. CONCLUSIONS

Experimental design How to design an experiment

You were right, Carl,

Humans don't land on their feet.

Variables **Experimental Design**

- A Variable is anything that can change or be changed
- You run an experiment when you want to determine causality
 - i.e. To determine if one Variable causes a change in another Variable
- Consider a car race:
 - What can change in a race?

Variables **Experimental Design**

- What can change in a race?
 - type of car, color, speed, distance, traffic weather, mood of driver, age of driver, etc
 - These are called variables
- In an experiment, should we vary all of our variables?
 - You don't want to vary everything: too complicated
 - You want to **control** some of your variables: make sure that they don't change

Example **Experimental Design**

- Hypothesis: The color of the car affects how fast you drive
- Psychological Experiment:
 - Participants are assigned to four conditions: a cyan, blue, red, and green Porsche 911.
 - Each Participant races around an empty racetrack 50 times
- What changes? What stays the same? What's measured?

Types of Variables **Control vs Independent vs Dependent**

- **Control Variables**: anything that is held constant or limited in a research study.
- Independent Variable: the variable you purposefully modify
- **Dependent variable**: the variable that you measure

Variable	Value	category
type of car	Porsche 911	Control
distance	50 times around track	Control
weather	Sunny day	mostly Control
traffic	no one else on track	Control
color	cyan, blue, red, or green	independent variable
mood of driver	Unknown	assumed control/ignored
age of driver	18-34	Age-group Control
speed	measured for each participant	dependent variable

Types of Variables **Plotting your Results**

- Independent Variable: x-axis (cause)
- **Dependent variable**: y-axis (effect)

Independent Variable

Experimental Groups Example Experimental Design

- Question: Does listening to music improve learning?
- Hypothesis: Listening to classical music improves the ability to memorize 40 random words in 5 minutes
- Variables
 - Independent Variable?
 - Dependent variable?
 - Controlled variables?
- Participants: 24 students in a class

Sampling Important Terms

- **Population (N)** the entirety of something
 - whatever it is that you want to know about
 - Can be defined however you want
- Sample (n) a subset of the Population
 - Non-probability Sampling
 - Just sample what's available, convenience
 - Probability Sampling
 - Random selection \bullet
 - Stratified selection

Random Sampling

What % of Americans support Marijuana Legalization?

- Population?
 - Everyone over 18
 - they can give consent and answer our questions
- Sample?
 - Random Selection (like picking) names out of a hat, or the lottery)
 - n = 2,000 people

Validity

What % of Americans support Marijuana Legalization?

- The Key to a good sample is that it is **Representative** of the entire Population
 - If your Population is 50% women, your sample should be 50% Women
- High External Validity
 - Representative Sample you can make good inferences about the population
- Low External Validity
 - Sample bias: sometimes random numbers can be random
 - Not representative, not good for inferences

Stratified Sampling Experimental design

- Better Method for Larger Populations
 - helps Avoid sampling bias
 - Ensure all groups are represented
- Strata means layer
 - subgroups of a population
- Divy up your population into different strata
 - age, sex, income, race
 - e.g. Number of Men and Women should be equal
- Sample is generated by randomly choose participants from each strata

What % of Americans support Marijuana Legalization? **Population (N)** 200 million adults income sex strata race strata strata inference inference sample Sample (n)

Data Wrangling

Managing Data Measures of Central tendencies

- What do you do once you measure something?
 - like Heights
- Measures of central tendency
 - mean
 - median
 - standard deviation
 - range

student id	height (in)	
1	70.9	
2	73.2	
3	70.3	
4	71.7	
5	70.9	
6	68.3	
7	69.8	
8	67.1	
9	71.3	
10	66.2	
11	66.4	
12	67.1	
13	61.7	
14	72.7	
15	69.9	
16	67.2	
17	72.5	
18	64.8	
19	68.8	
20	68.5	
21	69.9	
22	69.9	

mean = 69.42"std = 2.2"

Height(Inches)

Managing Data Normal Curve

Normal curve fitted to SAT score data

Using the empirical rule in a normal distribution

Using Normal Curves allows us to assign a probability to each measured value.

Multiple samples Are they different?

- With Random sampling, you will often get slightly different means and data distributions just by chance
- So, how can you tell if they are the same or different populations?

rent means and data distributions just by chance opulations?

Hypothesis Testing Common stats test to determine whether two samples are the same or different

- Null Hypothesis: the means are the same •
- Alternative Hypothesis: the means are different •

If the values goes beyond the threshold value, then we accept the alternative hypothesis and reject the other one.

Alternative Hypothesis with designated Standard Deviation

Type I error

5% Significance means 1/20 chance - not impossible

Science in Crisis?

IS IT TIME TO DR. FAUCI?

Paul Becker / Becker1999

"A lie can travel halfway around the world while the truth is still putting on its shoes."

> "It takes way more energy to refute bullshit than it does to produce it."

> > - Brandolini's Law

"A Lie runs until it is overtaken by the truth" - Cuban Wisdom

History of Vaccine Hesitancy Science in Crisis?

- Anti-vax movement galvanized by 1998 scientific study
 - Andrew Wakefield, former British physician
 - Paper: MMR vaccine causes autism
 - Shoddy Paper was retracted a few years after publication
 - Wakefield found guilty of profession misconduct and his medical license was revoked
 - 20 years of research have thoroughly debunked the claims of the paper
- And yet...
 - Wakefield remains a fairly prominent Anti-vaxxer
 - Vaccine Hesitancy has metastasized to all vaccines, including COVID

The trouble with vermectin Science not always great in the very short term

- Ivermectin is an anti-parasitic drug most commonly used in veterinary medicine to prevent and treat heartworm and acariasis. \bullet
- Early during the pandemic, Ivermectin was touted as powerful tool to combat COVID-19 \bullet
 - Several Early studies showed improvement after taking ivermectin
 - Perhaps random sampling error?
 - Powerful dewormer maybe effective in countries where people have parasites/worms?
 - Desperate need for any treatment?
 - Meta-analysis since then has shown to not be effective in treating COVID-19
 - still a valuable drug to treat parasites
 - FDA: "Do not use Ivermectin for treatment of COVID-19"
- Similar issues with Mask Usage
 - Early studies showed conflicted results not even sure how COVID spread, etc
 - also suffered from becoming wrapped up in a Political Identity

Anthony Fauci, MD Director of the National Institute of Allergy and Infectious Diseases (NIAID)

- Has served the public health sector for more than 50 years
- Key figure in battling the HIV/AIDS epidemic in the 1980s
- Awarded the Presidential Medal of Freedom in 2008 by George W Bush
- Member of the White House Coronavirus Task Force
 - became embroiled in controversy because his advice contradicted the Trump Administration (politics)
 - His advice has since borne out to be mostly true

The impact of vaccines and behavior on US cumulative deaths from COVID-19 Brookings Institute Mar 2024 (CU mathematician)

- Created a mathematical model of the Pandemic
 - Behavioral Changes: social distancing, masking, etc
 - Rate of Getting Vaccinated
- Found Vaccines and Behavioral changes inextricably linked
 - Eventually everyone would have been infected, no matter what
 - Without Behavioral Changes, everyone would have been infected faster
 - Without Vaccination, COVID 4X more likely to kill
- Social Distancing and Masking saved 800,000 lives
 - delayed infection rates
 - But had HUGE economic and social costs
- Vaccine hesitancy and the slowdown in their deployment "Cost an additional 273,000 preventable deaths" from the Delta and Omicron variants

Prevalence of COVID in U.S. Population

Source: Jones et al. (2021)

Note: Blue dots show infection levels in population; orange dots show combined seroprevalence resulting from infection and vaccination.

BROOKINGS

Reproducibility Crisis

Uh oh, we're not getting the same results...

- Recent studies have been unable to recreate results from the past
- Nature Survey
 - More than 70% of researchers have tried and failed to reproduce another scientist's experiments
 - More than 50% have failed to reproduce their own experiments

7% Don't know

> **3%** No, there is no crisis

IS THERE A **Reproducibility CRISIS**?

A Nature survey lifts the lid on how researchers view the 'crisis' rocking science and what they think will help.

BY MONYA BAKER

52% Yes, a significant crisis

> 1,576 RESEARCHERS SURVEYED

38% Yes, a slight crisis

Potential Causes Reproducibility Crisis

- Reporting Issues
 - Selective reporting: only positive (sexy) results are published
 - Pressure to publish
- Stats problems
 - low stats power (small sample size)
 - poor analysis
- Procedural problems
 - Documentation issues
 - Poor experimental design
 - Data not available
- Not enough time spent on designing good research

WHAT FACTORS CONTRIBUTE TO IRREPRODUCIBLE RESEARCH?

Many top-rated factors relate to intense competition and time pressure.

Always/often contribute Sometimes contribute

100%

Problematic Scientific Approaches Reproducibility Crisis

- Sample Size too small
 - Variation may simply be from random effects
 - Use a Power Analysis to fix
- P-Hacking
 - If you measure enough things, something will be found to statistically significant
 - p < 0.05: means a 1 in 20 probablity
- HARKing
 - "hypothesizing after the results are known"- Creating a new Hypothesis after you get the results
 - Hypothesis now Tailored to the Sample instead previous results
 - increases likelihood that results are not reproducible

Feedforward Cycle of Low Research Quality

Modified from Munafò et al., 2017 Nature Human Beh 1: 0021

Generate and specify hypothesis

Failure to control for bias

Design study Low statistical power

Conduct study and collect data

Poor quality control

Rigor and Reproducibility So, what can we do?

Call for Transparency **Better reporting of methods**

- In 2007, Clinical Trial for a very promising drug for ALS failed
 - NIH went back to review prior mouse studies the motivated the clinical trial
 - Found many procedural errors
 - No Blind testing, studies weren't properly randomized, sex of mice wasn't reported
- When the researchers repeated the • experiments with better methods, they failed to reproduce the promising results

*Although riluzole is the only drug currently approved by the US Food and Drug Administration for ALS, our work showed no survival benefit. +References for published studies can be found in supplementary information at go.nature.com/hf4jf6.

Call for Transparency NIH perspective in Nature

Randomization

- Animals should be assigned randomly to the various experimental groups, and the method of randomization reported.
- Data should be collected and processed randomly or appropriately blocked.

• Blinding

- Allocation concealment: the investigator should be unaware of the group to which the next animal taken from a cage will be allocated.
- Blinded conduct of the experiment: animal caretakers and investigators conducting the experiments should be blinded to the allocation sequence.
- Blinded assessment of outcome: investigators assessing, measuring or quantifying experimental outcomes should be blinded to the intervention.

Sample-size estimation

- An appropriate sample size should be computed when the study is being designed and the statistical method of computation reported.
- Statistical methods that take into account multiple evaluations of the data should be used when an interim evaluation is carried out.

PERSPECTIVE

A call for transparent reporting to optimize the predictive value of preclinical research https://www.nature.com/articles/nature11556

Data handling

- Rules for stopping data collection should be defined in advance.
- Criteria for inclusion and exclusion of data should be established prospectively.
- How outliers will be defined and handled should be decided when the experiment is being designed, and any data removed before analysis should be reported.
- The primary end point should be prospectively selected. If multiple end points are to be assessed, then appropriate statistical corrections should be applied.
- Investigators should report on data missing because of attrition or exclusion.
- Pseudo replicate issues need to be considered during study design and analysis.
- Investigators should report how often a particular experiment was performed and whether results were substantiated by repetition under a range of conditions.

Rigor and Reproducibility in Grants improving experimental design

- Rigor and Reproducibility training is required for all trainees (hence this lecture)
- All NIH grants must have section on how the experiments will be properly performed
- Your role:
 - be a good trainee
 - Keep good notes don't delete anything
 - Always ask questions if you don't understand something
 - be consistent in your work
 - Keep Rigor and reproducibility in mind if something doesn't make sense, ask